skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stephens, Lauren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Protection against airborne viruses has become very relevant since the outbreak of SARS-CoV-2. Nonwoven face masks along with heating, ventilation, and air conditioning (HVAC) filters have been used extensively to reduce infection rates; however, some of these filter materials provide inadequate protection due to insufficient initial filtration efficiency (FE) and FE decrease with time. Flat sheet porous membranes, which have been used extensively to filter waterborne microbes and particulate matter due to their high FE have the potential to filter air pollutants without compromising its FE over time. Therefore, in this study, single layer polysulfone (PSf) membranes were fabricated via non-solvent induced phase separation (NIPS) and were tested for airflow rate, pressure drop and FE. Polyethylene glycol (PEG) and glycerol were employed as pore-forming agents, and the effect of the primary polymer and pore-forming additive molecular weights (MW) on airflow rate and pressure drop were studied at different concentrations. The thermodynamic stability of dope solutions with different MWs of PSf and PEG in N-methylpyrrolidone (NMP) at different concentrations was determined using cloud-point measurements to construct a ternary phase diagram. Surface composition of the fabricated membranes was characterized using contact angle and X-ray photoelectron spectroscopy (XPS), while membrane morphology was characterized by SEM, and tensile strength experiments were performed to analyze the membrane mechanical strength (MS). It was observed that an increase in PSf and PEG molecular weight and concentration increased airflow and decreased pressure drop. PSf60:PEG20:NMP (15:15:70)% w/w showed the highest air flow rate and lowest pressure drop, but at the expense of the mechanical strength, which was improved significantly by attaching the membrane to a 3D-printed polypropylene support. Lastly, the FE values of the membranes were similar to those of double-layer N95 filters and significantly higher than those of single layer of N95, surgical mask and HVAC (MERV 11) filters. 
    more » « less
  2. Abstract Metal‐coordinated hydrogels can form a percolated network with transient bonds due to metal ions‐functional group coordination. Each metal ion can link with more than one ligand, leading to intricate speciation of bonding modes. While the mechanics of transient gels made with four‐arm polymers are often studied, less is known about how increasing the number of arms affects the modulus. Using shear rheology, the modulus of hydrogels prepared from four‐, six‐, and eight‐armed poly(ethylene glycols), functionalized with histidine ligands that complex with nickel (II) ions is measured. These gels have matched polymer wt.% and varied pH to compare their moduli. It is considered whether the modulus can be described by established polymer network models by calculating the speciation of metal‐coordinated cross‐links and then incorporating it into a phantom network prediction. This study finds that 1) increasing the number of polymer arms increases the modulus, 2) the phantom network allows reasonable modulus approximation for four‐arm and six‐arm gels, and 3) the modulus of eight‐arm gels exceeds the phantom network prediction. Since polymer cores act as chemical cross‐links and metal‐coordinated cross‐links form network strands, it is possible that increasing the number of metal‐coordinated linkages per molecule reinforces the chemical cross‐link at the polymer core. 
    more » « less